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October 1993 

A novel analytic treatment of the multi-bunch motion for a partially tilled ring is presented. We 
start with a standard set of wake ticld-coupled equations of motion describing a train of M consecutive 
bunches in a storage ring of harmonic number N, where the wake field effects are separated into: the beam 
loading force, the incoherent tune shift due to potential well distortion and the coherent multi-bunch 
coupling. Unlike in the case of completely filled ring, now, the first two quantities vary from bunch to 
bunch. Here, we evaluate both quantities analytically (using contour integration technique) for a general 
situation of a partially tilled ring (M < N), where individual bunches are mutually interacting via wake 
fields generated by resonant structures. Resulting simple analytic formulas describe the beam loading force 
and the incoherent tune shift experienced by a given bunch within the train, as a function of the resonant 
frequency, or, and the quality factor of the coupling impedance, Q. The first formula reveals resonant 
frequency regions in the vicinity of the integer multiples of the r.f. frequency, Nw,,, where the beam loading 
respmse is still equal for all bunches (its absolute value scales as M). It also identifies the second (denser) 
set of characteristic resonant frequencies, spaced by the multiples of No&l, at which the beam loading 
force is not only bunch independent, but also considerably smaller (it scales as MQ-2). Conversely, our 
analytic formula identities frequency regions, where bunch-to-bunch variation of the beam loading force is 
the strongest (or at odd multiples of Nw,/2M). Similarly, an analogous analytic formula describing the 
amount of incoherent synchrotron tune shift suffered by different bunches was derived. Both analytic 
expressions give one an insight into various optimiziug schemes; e.g. to modify the existing configuration 
of parasitic cavity resonances (via frequency tuning), so that the resulting bunch-to-bunch spread of the 
beam loading force and/or the synchrouon tune spread could be instrumental in stabilizing (via Landau 
damping) some unstable modes of the coupled bunch instabilit,y. A number of other possible applications 
of the presented formalism emerge from the fact that for a given contiguration of cavity resonances one can 
get immediately a simple quantitative answer in terms of the beam loading and the synchrotron tune shift 
experienced by each bunch along the train. 
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1. U’ITRODUCTION 

While coupled multi-bunch motion for a symmetric configuration of populated buckets in a 

storage ring has been extensively studied and the stability problem h&s a closed analytic solution’, a fully 

populated ring is rarely the case for any operational mode of a realistic synchrotron. As a beam is injected 

and extracted to and from a storage ring there is usually a gap of missing bunches to accommodate 

injection/extraction kickers. Even a small gap breaks down the symmetry of a coupled multi-bunch motion. 

Quite often, an extremely non-symmetric situation is present in high energy colliders, where a relatively 

short train of bunches is being accelerated in a long storage ring; e.g. during bunch coalescing. 

Here, we present a rigorous treaunent of the ham loading and potential well distortion effects for a 

general non-symmetic contiguration of populated hucket,s. We formulate che pmblem in the framework of a 

system of differential equations of motion for individual bunches coupled via wake fields. First, we extract 

non-symmetric beam loading and potential well distortion tcrnu from the rest of the multi-bunch coupling. 

The core of this paper is an analytic method, involving contour integration in complex frequency domain, 

which yields a pair of closed expressions describing the beam loading and the potential well distortion 

effects, driven by ageneral resonant hnpedance, for the case of partially filled ring. 

Both quantities, the heam loading force and the incoherent synchrotron tune shift, are expressed in 

terms of explicit functions of: the hunch index, the resonant frequency and the quality factor of the 

impeduce p&. Superimposing many parasitic cavity modes one can use the ahove formula.5 to choose 

appropriate tuning of existing configuration of parasitic modes to huease stability of the coupled hunch 

motion. 



2. COUPLED MULTI-BUNCH MOTION 

We assume a storage ring of a harmonic numher N populated by a train of M consecutive hunches, 

where M 5 N. We will confine our consideration to the dipole mode of the longitudinal motion only. 

Therefore, it will be sufficient to model each hunch as a macro particle combining intensity of the entire 

bunch. To describe a coupled motion of a system of M hunches one can represent a state of the system at a 

given time by the following vector in the M-dimensional configuration space RM 

IYW = 

‘y,(t) 
Yz(O 

:I, 

(2.1) 

.YJ.ico 

where the n-th component of the above vector describes the longitudinal coordinate (e.g. longitudinal 

displacement with respect to the center of a bucket) of the n-th bunch. 

Collective synchrolron motion of the system on M hunches coupled via wake fields can be desaibcd 

by the following set of equations of motion’~* 

$ y,(t) + d y,(t) = A ,L &’ (4 k+“~)To+~[y,(t)-y”~(t-(k+m~)To)]) , 

where (2.2) 

A = ~owwo 
2rry 

Here W’ is the time derivative of tbe wake function, o is the unperturbed synchrotron frequency, q is the 

revolution frequency dispersion function, c is the velocity of light, r0 is the classical proton radius, a0 is 

the revolution frequency and To is the revolution period. 



The argument of the wake function in the fight hand side of E4.(2.2) can be separated into a large part 

given by the bunch separation and a small correction of the order of the relative bunch displacement due to 

the synchrotron motion. Taylor expansion of the wake function with respect to the difference of bunch 

displacements (up to the linear term) allows one to rewrite the set of equations of motion as follows 

- M-L 
&n(t~+“2yo(t~=Ak~ m&W+(k+m+)To)+ (2.3) 

W’f- (k + “+ )To) [y,(t) - ym( t - (k + “+ ,To)] 

We can identify the first term in the right hand side of Eq.(2.3) with the beam loading force, which drives 

the n-th hunch. It explicitly depends on the bunch index n. We will denote it by f,. 

(2.4) 

Furthermore, a term proportional to y.(t) in the right hand side of Eq.(2.3) can be absorbed by the 

syuchrouon frequency. This is known as the incoherent synchrotron frequency shift due to the potential well 

distortion; it will be denoted by Ao.2. This term can be ahsorbed to redefine the perturbed synchrotron 

frequency corrected according to the following expression 

On2 = “,2 - A”,,2 

where 

A%* = A ; ,c “&W”(-(k + “+ )To) 

(2.5) 

Here, w,- the corrected synchrotron frequency of the n-th hunch explicitly depends on the hunch index n. 

Both f. and Ao.2 will be evaluated explicitly in the next section. 



Now the set of equations of motion, Eq.(2.2), can be rewritten as follows 

g y,(t) + (0 2 - AU,*) y,(t) = f, + (2.6) 

- A : ,c &+(k + “+ )To) y.,(t - (k + “+ )T,), 

where the last term in the right hand side of Eq.(2.6) represents pure coherent multi-hunch wake field 

coupling term, which may result in a collective synchrotron motion of hunches - a multi-bunch instability. 

The resulting set of equations of motion, Eq.(2.6), aloug with a convenient representation of the 

wake field coupling in terms of the longitudinal impedauce, will be analyzed in the complex frequency 

domain later in the paper. 



3. BEAM LOADING AND INCOHERENT TUNE SHIFT - FULL VS PARTIALLY FILLED 

RING 

To evaluate both the beam loading term and the incoherent synchrotron frequency shift due to the 

potential well distortion it is convenient to express them in terms of the longitudinal coupling impedance. 

The time derivative of the wake function is related to the longitudinal impedance via the inverse Fourier 

ua”sf”ml as follows 

W’(t) =;-jdo eior Z,,(O) 

Similar relationship holds for the second time derivative of the wake fuuction 

w”(t) = - & -1 do w eiot Z,,(o) 

(3.1) 

(3.2) 

One may substitute EqK3.1) and (3.2) into Eq.(2.4) and (2.5) respectively. The resulting expressions 

are. written as follows 

f, = E ,L yz: _ jdO eeiock + m+)T” ?,(o) , 

A.w,~ = & r$w ;z; jdm &x?(~ + m+)TO Z,,(o) 

(3.3) 

(3.4) 

Infinite summation over k can ix carried out explicitly using a trivial version of the Poisson sum identity: 

k&-iokTo = w. p~&w - POO) (3.5) 



Substituting Eq.(3.5) in Eqs.(3.3) and (3.2) one can also carry out integration over o. The resulting 

expressions are given by 

f” = 00 E $ Mi’ Z,,(pCoo) e2xip “+, 
P - ml=0 

w M-l 2rrip “+ 
e 

(3.6) 

(3.7) 

Applying a simple sum identity, F.q.(Al), to EqQ3.6) and (3.7) one can rewrite them in the following form 

fn = a0 E 2 Ni’e2nie k Z,,((Nq + !)wO) Iz:e- 2ni’ ‘, 
93-m e=o 

(3.8) 

M-l 

Acon2 = co0 & z ‘$‘ezni’ i [(Nq + &~)a] Z$((Nq + 0oo) c e- 2nie ‘3 (3.9) 
q - -0 m=o 

The last summation (over m) in Eqs.(3.8) and (3.9) can be carried out explicitly, Eq.(A3) and (AS), (see 

Appendix A). The resulting formula is written as follows 

I ’ Y=O...N-1. (3.10) 
m=o sin nl; 

One can immediately see that in case of the full ring (M = N) the above expression, Eq.(3.10), reduces to 

the following simple form 

Be= N6,,, , I=O...N-I (3.11) 



Substitution Eq.(3.11) into EqQ3.8) and (3.9) and carrying summation over P yields the following set of 

expressions for the full ring 

(%,, = Wo E N c Z,,@Wd 1 q=-- 

(Aw*)~~~~ = 00 & N c (Nqoo) Z,,(Nqoo) 
4c-m 

(3.12) 

(3.13) 

We notice in passing that in the above expressions, lZqs.(3.12) and (3.13). the bunch index, n, is no longer 

present. This simplicity, granted by the symmetry of the bunch configuration is inherent to the full ring 

case only. For the general partially filled ring case (M < N) both quantities: f. and Ao,“, given by 

Eqs(3.8) and (3.9) vary with the bunch location within the sequence. In the next two sections we will 

derive analytically a simple set of closed formulas describing f, and Ao, * in the ca.x. of partially filled ring 

(M c N) driven by a general resonant impedance. 



4. BEAM LOADING EFFECTS 

We wish to evaluate the general beam loading function, f., given by Eq.(3.6), where n = O,..., M - 1 

for the case of partially filled ring (M < N). Summing explicitly over m, one can rewrite Eq.(3.6) into the 

following convenient form 

F(P%) (4.1) 

The last part of Eq.(4.1) highlights generic sampling structure of the above expression. Applying the 

following form of the Poisson sum identity 

2 F(poo) = pzeID 
,$ ; 1 dw e2*iq: F(o) , 

- - 
(4.2) 

to Eq(4.1) one can express it in the following form 

fn=iAcqc I& 

-- I 

2ni(q + k) 2 

do Z,,(o) 
e “0 - e 

2nicq - M+) E 

-2xi & 
(4.3) 

l-e 
-w 

Introducing two kinds of generic integrals, namely: 

I+(k) = & 
e 
2nik e 

do Z,,(o) -2ni& ’ 
k>O 

l-e 0 

(4.4) 



1-W) = & ! e 
-2xik .& 

do Z,,(w) -2ni& ’ 
k>O 

l-e 
(4.5) 

one can express the beam loading term, Eq.(4.3). in the following compact form 

f. = iAc {I’(n) - I-(k) + $, [I+(Nq + “) + 1-N - “1 + 

- I+(Nq - (M - n)) - I-(Nq + (M - II,,]} , (4.6) 

Assuming general form of the longitudinal impedance of a resonant structure, given by the following 

standard expression: 

(4.7) 

where R is tie shunt impedance, Q is the quality factor of the re.wnator and II+ is its remnant frequency, one 

can evaluate integrals I’(k) and I-(k) explicitly via contour integration (see Appendix B). The resulting 

expressions given by Eqs.(B5) and (B6) are summarized as below 

2nik 2 2aik & 

I*(k)=: 00 &N x Z,,(Np%) - i & p=-- 
(a, e-21i o+ - 

N% 
ow e-2ni L 

1 - e l-e No, 1 , (4.8) 

1-N) = -; wo k N c Z,,(NpoO) , p=-w 
(4.9) 

where the singularities of Z,,(w) are defined by the following pair of complex poles o+ located in the upper 

half plane 
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co* = w,(* I + is), 6=&<<1 (4.10) 

Substituting the above integrals, Eqs.(4.9)-(4.10) into Eq.(4.6) one can carry out remaining infinite 

summation over q, which converges to the following simple expression 

2 e o. = ey:A 2niq 2 
, since Im o* > 0. 

q=, 
l-e ma 

Finally, one can rewrite Eq.(4.6) in the following form 

f,, = o0 Ac N c Z,,(Npwo) + 
2n ‘p=-DD 

(4.11) 

(4.12) 

+A’& C 2Kill$(l-~~i(N-M)~) o_e2nin~(1_e2ni(N-M)~) 

- 1 
The first term in Eq.(4.12) can he immediately identified with the beam loading term for a fully populated 

ring, (f),,,, given in the previous section by Eq(3.12). Furthermore, (f),,, was evaluated explicitly for our 

model resonant impedance, Eq.(4.7), at the end of the Appendix B (see EqXB.14)). The result can be 

summarized as follows 

(f),,,= A? (2) N 6’ $$ ‘s;$$ 
NO<, + NW, 

Introducing a new function T(o) defined by: 

(4.13) 

(4.14) 

II 



one can express f, in the following compact form 

f, = (f),,, + AC 1”6 [w+ l-(0,) - O- TW] 

Employing symmetry of r(o), namely 

I--O*) = r*(0), 

and the fact that Q = -0,‘. one can rewrite Eq.(4.15) as follows 

f” = (f),,, + AC $ 2Re[o+ r(0+)] 

(4.15) 

(4.16) 

(4.17) 

Cutting through some tedious algebra explicit expressions for Re[T(o+)] and Im[r(o+)] were worked out 

as a” expansion in 8 (keeping up to quadratic lenns in 6). Substituting them along with EqX4.13) into 

Eq.(4.17) one obtains the final formula for f, 

_ sin(z) sin(qM)cos(z(2n - M - 1)) 

sin’(z) + ( q)262 
(4.18) 

Denoting the expression in curly bncket by T,, one can introduce a dimensionless beam loading force. Its 

asymptotic behavior for the resonant frequencies, o,, in the vicinity of the integer multiples of the r.f. 

frequency, No,, namely: 

o,=kNw,+Ao,, (4.19) 

12 



is determined by the relative strength of the expressions appearing in the denominator of Eq.(4.18). 

Defining the immediate vicinity of the integer multiple by the following inequality 

sin’(z) << (2)’ S2. 

one can rewrite it using EqX4.19) as 

Z<<k6 
0 

(4.u)) 

(4.21) 

If the above condition is satisfied, Eq.(4.18), reduces to the following simple expression: 

;,=M 1 (4.22) 

where a bunch independent heam loading force scales as the total number of bunches, M. Outside the 

immediate vicinity of the integer multiple (inequality, Eq.(4.21), reversed) our expression, Eq.(4.1@, 

assumes the following asymptotic form: 

? 

n 

=_ sin(~M)cos(~(Zn - M - 1)) 

sin(z) ’ 
(4.23) 

which does not depend explicitly on the resonance width, 6. Apart from the integer multiples of the r.f. 

frequency, No,,, the structure of F&(4.18) (zeros of sin 
r > 

~0, M ) reveals another finer level of symmetry 

governed by the fractional, k, multiples of No,. Indeed, the second (bunch index dependent) term in 

Eq(4.18) vanishes for a discrete set of resonant frequencies defined by 

m,=(k +;)No,, e-l,2 I..., M- 1 (4.24) 

13 



The beam loading force for these resonant frequencies does not depend on the bunch index and it scales 

according to the following asymptotics 

T.=o( 62)) (4.25) 

Conversely, one can find frequency regions where bunch-to-bunch variation of the beam loading force is the 

strongest. From L?.q.(4.23) one can easily identify them with the extremes of sin (” ),“amdY 6 M 

w~=(,+~~)Nw~, !=1,2 I..., M- 1 (4.26) 

Figure 1 illustrates a family of curves ?‘“(o,) for N = 1000, M = 10 and Q =lOO. All the asymptotic 

features of the beam loading force, as discussed above, are visible in our example. To compare it with the 

beam loading force in case of a completely tilled ring given by (7 f fu,,, extracted from Fq(4.13) as follows: 

6),,, = (q) N 6’ 
(3) - ~sin(E$) 

sin’($) + ( $)‘S2 ’ 
(4.27) 

we plot the above quantity for our numerical example (see Figure 2). Again, the peak value scales with the 

total number of bunches, N, and the width of the peak in Figurc 2 is determined by the following identity: 

Ao,=Ne$ 
Q (4.28) 

14 



5. INCOHERENT SYNCHROTRON TUNE SHIFT - POTENTIAL WELL DISTORTION 

We wish to evaluate general form of the incoherent synchrotron tune shift, A,o.~, given by Eq.(3.6), 

where n = O,..., M - 1 for tbe case of partially tilled ring (M < N). Summing explicitly over m, one can 

rewrite Eq.(3.6) into the following convenient form 

A&2 = (“() L c e*ai(pa+y it 
2ni p=-- (PQ) Z,,(PQ) 

l-e 
-Zni(pm,* 

l-e 
-Zni(po,)& 

=c G(PwJ (5.1) 
p =__ 

The last part of Eq.(5.1) highlights generic sampling structure of the above formula. 

The above expression, E!4.(5.1), resembles EqX4.1) - the starting point of the previous section: in 

fact one can apply exactly the same method, as used in Sec. 4, to evaluate the incoherent tune shift. 

Repeating a whole sequence of steps from the previous section, described by Eqs(4.2) - (4.11), one obtains 

an analog of Eq.(4.12), which can be written as follows 

Aa.* = 00 & N c (NP%) ~,(NPQ) + &I=-- 
(5.2) 

Similarly, the first term in E!4.(5.2) can be immediately identified with the incoherent tune shift for a fully 

populated ring, (Aoz),,,, given before hy E&(3.13). Furthermore, it was evaluated explicitly for our model 

resonant impedance, Eq.(4.7), in the Appendix C (see Eq.(C.l2)). The result can be summarized as follows 



(Ao*&~,~ = ; AR”,’ 6 
CL3) 

Here, T is a characteristic bunch length in units of time. Using previously defmed function T(w), Eq.(4.14), 

one can express Aa.* in the following compact form 

Am,* = (AeP),,, - Ai $ [t~+~l%+) - CK2 r(W)] (5.4) 

Employing symmetry of r(w), Eq.(4.16), and the fact that or_ = -a+‘, one can rewrite E4.(5.4) as follows 

Ao,z = (AU&~),,, + A & 211+0+~ r(O+)] (5.5) 

Substituting the explicit expressions for Re[T(o+)] and Im[r(o+)] al on g with Eq.(5.3) into Eq.(5.5) one 

obtains the final formula for Aw.* 

A%‘% R Aw.2 = ~ - 
M 6’(z) + \N sin(z) 

x Q 
- 2 c”s(nN t) + (3) 

sin’(g) + ( $-)2?i2 + 

_ ~ sin(z) sin(zM)sin(z(2” - M - 1)) 
sin’(z) + ( q)262 

(5.6) 

Denoting the expression in curly bracket by AijDz, one can introduce a dimensionless square of the 

synchrotron tune shift. Its asymptotic behavior for the resonant frequencies, CO,, in the vicinity of the 

integer multiples of the r.f. frequency, No,, namely: 

co, = k Nw, + Ao, , (5.7) 

16 



is determined by the relative strength of the expressions appearing in the denominator of Fq.(5.6). Defining 

the immediate vicinity of the integer multiple by tbe following inequality 

sin’(z) << (z)’ 6’. 

one can rewrite it using F445.7) as 

z<<kS 
0 

W3) 

(5.9) 

If the above condition is satisfied, Eq.(5.6), reduces to the following simple expression: 

A&n2 = - ~c”s(aN 6) +M , (5.10) 

where a bunch independent square of the synchrotron frequency shift scales as the to&d number of bunches, 

M. Assuming a realistic value of a bunch length, in terms of the bunching factor, N $, equal to 0.1, the 

fast term in F445.10) can be evaluated approximately as follows 

2 c”s(,N 6) = 5N (5.11) 

Outside the immediate vicinity of the integer multiple (inequality, Eq.(5.9), reversed) our expression, 

Eq.(5.6), assumes the following asymptotic form: 

AG+SN+;N($$ot(~) - 
Qsin(zM) sin(q(2n - M - 1)) 

si”(.p) ’ C5.12) 

which does not depend explicitly on the resonance width, 6. Apart from the integer multiples of the r.f. 

frequency, No,, the structure of Fq(5.6) (zeros of sin (” > 
NO0 M ) reveals anotber finer level of symmetry 

17 



governed by the fractional, i, multiples of No,. Indeed, tbe third (bunch index dependent) term in Eq(5.6) 

vanishes for a discrete set of resonant frequencies defined by 

,,=(k +;)N,, , e=l,2 ,..., M- 1 (5.13) 

‘Ike amount of the synchrotron tune shift for these resonant frequencies does not depend on the bunch index. 

Conversely, one can find frequency regions where bunch-to-bunch variation of the synchrotron tune is the 

strongest. From Eq.(5.12) one can easily identify them with the extremes of sin (” ),nmely s M 

u~=(,,$).,~, Y=l,2 ,..., M- 1 

One can see from Eqs.(5.6) and (5.12) that tbe synchrotron frequency shift in case of a partially and 

completely tilled ring are almost the same, since the third term in both equations is very small compared to 

the fust two. Figure 3 illustrates the case of a completely filled ring (for N = loo0 and Q =loO), where the 

synchrotron frequency shift detioted by (AR!?)~“,, , extracted from Eq.(5.6) is plotted as a function of the 

resonant frequency, w, 

To illustrate a small hunch-to-bunch variation effect, a family of curves A& z - (A&z)fu,l is plotted 

as a function of o, in Figure 4 (N = 1000, M = 10 and Q =lOO). All the asymptotic features of the 

synchrotron tune shift, as discussed above, are visible in our example. 

IR 



6. SUMMARY 

Both quantities, the beam loading force and the incoherent synchrotmn tone shift, were calculated 

analytically (using contour integration technique) for a general situation of a partially filled ring (M < N), 

where individual bunches are mutually interacting via wake fields generated by resonant structures. 

Resulting simple analytic formukas describe the beam loading force and the incoherent tune shift experienced 

by a given bunch within the train, as a function of the resonant frequency, y. and the quality factor of the 

coupling impedance, Q. 

The first formula reveals resonant frequency regions in the vicinity of the integer multiples of the r.f. 

frequency, No,,, where the beam loading response is still equal for all bunches (its absolute value scales as 

M). It also identifies the second set of characteristic resonant frequencies, spaced by the multiples of 

No&l, at which the beam loading force is not only bunch independent, hut also considerably smaller (it 

scales as MQ-2). Conversely, our analytic formula identifies frequency regions, where bunch-to-bunch 

variation of the beam loading force is the svongest (or at odd multiples of No,/2M). Similarly, an 

analogous analytic formula describing the amount of incoherent synchrotron tune shift suffered by different 

bunches was derived. 

Both analytic expressions give one an insight into various optimizing schemes: e.g. to modify the 

existing configuration of parasitic cavity resonances (via frequency tuning), so that the resulting bunch-to- 

bunch spread of tbe beam loading force and/or the synchroUon tune spread could be instrumental in 

stabilizing sotne unstable modes of the coupled bunch instability. A number of other possible applications 

of tbe presented formalism emerge from the fact that for a given configuration of cavity resonances one can 

get immediately a simple quantitative answer in terms of the beam loading and the synchrotron tune shift 

experienced by each bunch along the train. 

19 



Superimposing many parasitic cavity modes one can use the above fortnulas to choose appropriate 

tuning of existing configuration of parasitic modes to increass stability of the coupled bunch motion. 

20 



APPENDIX A 

The following useful summation identity can be proven by inspection 

c. F(P~o) = c c F((Nq + 000) , p=-s cl=--(co 
(A.1) 

where F is an arbitrary continuous function and N is a positive integer. Indeed, any integer p can be written 

as p = Nq + e, where the numbers q and 6 are unique (there is one-to-one correspondence between p and a 

pair (q/J). Therefore summation over p is equivalent to a double summation over q and !. 

Let us evaluate the following sum of the first M N-th roots of unity, M 2 N 

M-l 
A,,= c e2=in' '+ , 

p=O...N- 1 

In=0 v=O...N- t 

The above sum is in fact a sum of a geometric series, which can be easily evaluared as 

A,, = e 
ai I.!$ tM ,) sin NP - v) X 

si” ~ l1-v 
N 

One can see that for M = N, the above equation simplifies as follows 

N-l 
A,,= c eznim ‘+=N6,,. 

Ill=0 

(A.21 

(A.3) 

We notice in passing that the general form of A,, given by Eq.(A.3), depends on the difference of p and v. 

Therefore, one can identify expression Bt, (see Section 2), with Aa. 

Bt=Am. (A.5) 
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APPENDIX B 

We wish to calculate the following pair of integrals: 

e 
Znik & 

do Z,,(w) -2ni& ’ 
k>O 

l-e 
(B.1) 

ml 

1-W = & I do Z,,(w) 
e 
-2nik & 0 

-2ni-K ’ k>O (B.74 

l-e No, 
-- 

Assuming general form of the longitudinal impedance of a resonant strocture, given Eq.(4.7), one can 

rewrite it in the following form 

Zll(@=-iR~(o _ ,+,o(, _ m-) , (B.3) 

where the singularities of Z,,(w) are defined by the following pair of complex poles o* (located in the upper 

half plane) 

a*= a,(*1 + is), 6=&<<1 (B ,411 

Here R is the shunt impedance, Q is the quality factor of the resonator and q is its resonant frequency. 

Both integtants, written explicilly in ECqs.(Bl) and (B2), have the same configuration of singularities 

in the complex o-plane. It includes a pair of poles, a*, in the upper half-plane, introduced by Z,,(w) and an 

intinite army of pales located on the real axis at integer multiples of No,. This last set of poles is 
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-2ni $- 
introduced by the zeros of the following denominator: 1 - e O, which appears in bath Eqs.(Bl) and 

(B2). Furthermore, the integrant of r(k) restricted to a semi-circle of radius R, closed in the upper half- 

plane, vanishes exponentially with R + - (faster than $ ). Similar property holds for the integrant of I-(k) 

in tbe lower half plane. 

Now we are ready to employ Cauchy’s integral theorem to evaluate principle value integrals I’(k) and 

I-(k) explicitly. Figure 5 illustrates a complete set of singularities along with tbe appropriate choice of 

integration contours for both I’(k) and I-(k); Cf and C- respectively. Carrying out integration along these 

contours via Cauchy’s integral theorem reduces integrals I’(k) and f(k) to the following sum of residuum 

I’(k)=~ 00 k N x Z,,(Np@- i& 

2nikz Znik& 

, 
p=-es w’ e-2,rio, - w- e-2,i$ (B.5) 

l-e Nq 1 - e N% 1 
I-(k)=-; 00 & N c Z,,(Npo,) , p=-- 

(B.6) 

The infinite sum over p appearing in both Eqs.(B.5) and (B.6) can be rewritten via the Poisson sum 

identity, Eq.(4.2) as follows 

NQ & ,” Z,,(Npad = ,t & j do ezniqk Z,,(W 1 

Since both singularities of q:,, a*, are located in the upper half plane the following integral 

(8.7) 

I, = & j do ezniq c Z,,(o), E3.8) 
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vanishes identically for q < 0. Simple application of Cauchy’s integral theorem along lhe contour C, 

illustrated in Figure 4, yields the following expression for I,, if q > 0 

Znik wc 
e 6-w-e 

Zxik k 1 . for q > 0. (B.9) 

llre remaining nontrivial case of I, (q = 0) can be evaluated via Cauchy’s integral theorem as follows 

* 

10=k j doRe[q,(o)]=-io,& (B.10) 

Substituting Eqs.cB.9) and (B.lO) into Eq.cB.7) one can carry out the remaining summation over q 

employing the following convergence formula 

lie 
Zniq $- e 

2ni 2 
0 = 

q=1 
l-e 

2ni$ 

The resulting expression can he summarized as follows 

Noo -?- C Z,,(Np& = - i k 
2xi p=-m 

since Im 0 * > 0. (B.ll) 

2ni 2 
e a 

2ni $ 
e o (4 + 0, - 

2ni $ 
o- 

Znik 
1 * (B.12) 

l-e o l-e a 

o* = a,(+ 1 + iiT), 6=$ 

After some algebra one can rewrite Eq(B.12) into the following convenient form 

(8.13) 

N% L c Z,,(NqQ) = - io, 6’ 
2ni 4=-s “q-) + ($.)V (B.14) 
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APPENDIX C 

We wish to evaluate an analog of F.q.(B.7), given by the following expression 

J = N”h L c (Npoo) Z&NV%) , 2ni p=-m Cl) 

The infinite sum over p appearing in Eq.(C.l) can be rewritten via the Poisson sum identity, Eq.(4.2) as 

follows 

J= ,z & 1 dwezniq~ “I q(“u 1 - - 
Since both singularities of q,, o, , are located in the upper half plane the following integral 

I, = & 1 do e2aiq k CII Z,,(o) , 

C.2) 

K.3) 

vanishes identically for q < 0 (see contour C illustrated in Figure 6h). Simple application of Cauchy’s 

integral theorem along the contour C,, illustrated in Figure 6a, yields the following expression for J,, if q 

>o 

R [0+2e*nik&“_2e2”“iq ,forq>O, 
Jq=-i24 

The remaining nontrivial case of J, (q = 0) can be written as follows 

Jo=& j da 0 Im[T,W] 

(C.4) 

(C.5) 
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One can notice that the ahove integral diverges for OUT model impedance, given by Eq.(B.3). Indeed, for 

large values of 0, Im[Z,,(o)] - i , therefore, J0 - 
,s 

do o i -+ -. This unphysical divergence can be 

removed assuming finite bunch length rather than a point like bunch structure. Assuming a simple 

reculngular bunch of length 7 (in time units) one should redefine I0 as follows 

lo = & ,I do P(O) 0 Im[ Z,W]. (C.6) 

where the bunch spectrum is given by 

p(o) = si”f;) CC.71 

Simple application of Cauchy’s integral theorem along the contours C+, illustrated in Figure 6, yields the 

following expression for J10 

To =- io, 5 “g4 
(C.8) 

Substituting Eqs(C.4) and (CR) into EqX.2) one can carry out the remaining summation over q 

employing the following convergence formula 

, since Im to* > 0. (C.9) 

The resulting expression can be summarized a follows 
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to* = o,(kl + i6), 6=&. 

After some algebra one can rewrite Eq.(C.lO) into the following convenient form 

J=IRo26 sin(z)+262 (3) 2 cos(iTm,) 
2 r 

1 
sin’(z) + ( z)262 - i5Y 

I 

(C.11) 

(C.12) 
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